Hyper-Text Structured Query Language

HTSQOL is a middleware component that translates a HTTP
request into a SQL query, performs the query against a
relational database, and returns the result as XML,
HTML, CSV, JSON, or YAML.

HTSQOL formalizes a URI-to-SQL translation, covering
common database query constructs with a succinct,
easy-to-learn syntax. HTSQL decouples the application
from the data-store, putting the database itself

"on the web". HTSQL is Open Source Technology.

T \ HTTP Request i — \ * select, insert, update,
| Wweb Browser | > |- delete and merge

|
| * Direct URLs | URI, headers, | \ .—-> Generated | * expressions & functions
| * HIML / XSLT | post/put body | v / SOL Query | * inner and outer joins
| * Javascript | | HTSQL | | * correlated sub-queries
| GUI Front End | HTTP Response |/ 7 v | * aggregates / projection
| * Java / C# | <e—mmmmmm— <--. \ DATABASE | * users and transactions
| * Python, etc | status code, | Query | | * row-level permissions
| Excel /w Macro | headers, and | Results <..../ | * TXT, CSV, XML, JSON,
| Command Line | formatted | | HTML and YAML formats

A / results L — /

HTSQL - Example / Regression

ORGANIZATION PLANNING and HUMAN RESOURCES CATALOG

Schema

——————————————————— + R —
OP.PROJECT | | OP.ORGANIZATION | PK - Primary Key
——————————————————— + F————————————— 4 FK - Foreign Key
prj_id PK |--\ /-—-| org_ id PK |---\ ---\ NN - Not NULL
name NN | | | | name NN || | CK - Check Constraint
status CK | | | | is_active NN || | UK - Unique Key
client FK |>--————e / | division of FK |>--/ | [1 - ARRAY TYPE
start date NN | | e + . | {} - ROW TYPE
description |] |
——————————————————— + | project is an organization |
.| related to may be a division |
a project has zero . | at most one of a larger |
or more people who | organization organization \ e \
participate in it | |
| S + |
——————————————————— + a person has at most | OP.PERSON | |
OP.PARTICIPATION | | one human resources o + |
------------------- + | private record . | org id FK,PKl |>-——-/
prj_id FK,PKl |>-/ . | nickname PK2 |
ppl seq FK,PK2 |>== e /---| ppl seq NN, UK |
billing rate | . | | name {given, | each person
capacity [] | o + . | middle, family } | 4is part of
------------------- + | HR.PRIVATE INFO | | | postfix } (NN) | exactly one
. e T + | | email | organization
a person participates | ppl seq FK,PK |>--/ +-———mmmmmmmmm +
in zero or more projects | tax ident |
- +

HTSQOL - Selection and Filters

GET /op:organization

Thisrequest selects all rows from the
organization table in the op schema. By

default, rows are ordered by primary key.

SELECT o.*
FROM op.organization AS o
ORDER BY o.org id

200 OK
Content-Type: text/plain; charset=UTF-8

| organization

+.

+ —

| org_id | name | is_active | division of |
+ + + + +

| lakeside | Lake Side Partners, LLC | |
| 1sapts | Lake Shore Apartments | True | lakeside
| 1stower | Lake Side Towers | True | lakeside
| meyers | Meyers Group | True |
| smith | Rudgen, Taupe, and Smith | False |

HTSQL uses percent-encoding for
non-printable characters, UTF-8
sequences, or RFC 2396 unwise or
reserved characters. Like SQL, catalog
entries can be double-quoted for
case-sensitive matching.

GET /op:organization.xml
?name~'meyers'

This query returns organizations where
the name matches a case-insensitive
regular expression. Unlike HTML form
submission, string literals are always
single-quoted.

SELECT o.*

FROM op.organization AS o

WHERE LOWER(name) LIKE '3meyers%'
ORDER BY o.org id

200 OK
Content-Type: text/xml; charset=UTF-8

<organization htsql:schema="op">
<_org_id="meyers" name="Meyers Group"
is_active="true" division of=""
htsql:is null="division of" />
</organization>

In this example, the XML output format
wasrequested. HTSQL attributes are
used cases to indicate NULLSs, to name a
schema or when the table/column
identifier is not a valid XML name.

HTSQL - Join Specifiers

GET /op:project
?client.name~'meyers'

An automatic join is constructed when a
single-column foreign-key is used with
the "dot" operator. In the op schema, the
client column of the projecttableis a
foreign key reference to organization.

SELECT p.*

FROM op.project AS p
JOIN organization AS o
ON (p.client = o.org id)

WHERE LOWER (o0.name)

LIKE '3%meyers%'

ORDER BY p.prj id

When it is not ambiguous, a table name
can likewise be used to indicate the
foreign-key join. In the above example,
the column specifier client could be

replaced with organization.

GET /op:project
?participation

Foreign-keys are also used in reverse to
create "plural” specifiers. The example
above returns all projects that have at
least one associated participation record.

SELECT p.*
FROM op.project AS p
WHERE EXISTS
(SELECT 'X'
FROM op.participation AS x
WHERE x.proj id = p.proj id)
ORDER BY p.prj id

In a predicate expression, a plural join
specifier is treated as an implicit test for
existence. If acolumn isreferenced by a
plural specifier in this manner, it is
implicitly converted to a boolean value.

HTSQL - Functions and Expressions

GET /op:organization
?2org_id.lower()[:2]='me'
&!division of

Full predicate algebra is supported, as
well as standard SQL functions and
operators. The "slice" syntax sugar is
included for substring operations.

SELECT o.*
FROM op.organization AS o
WHERE 'me' = SUBSTRING (
LOWER (0.org_id) FROM 1 FOR 2)
AND (o.division of IS NULL
OR o.division of = '')
ORDER BY o.org id

In HTSQL, non-boolean values found in a
predicate are implicitly cast as boolean:
zero, empty string, array of zero length,
and NULL are FALSE; all other values are
TRUE. All other type casting in HTSQL is

explicit. Functions are strictly typed.

GET /op:organization
?max (project.start date)
.year<2004

Aggregate functions are supported on
plural specifiers. Furthermore, fields of
user defined types and date components
can be accessed with the dot operator.

SELECT o.*
FROM op.organization AS o
WHERE EXTRACT(YEAR FROM
(SELECT MAX(p.start date)
FROM op.project AS p
WHERE p.client = o.org id))
< 2004
ORDER BY o.org id

To enhance readability, a method syntax
is provided for polymorphic functions.

NOTE: In the current implementation,
some of the generated SQL isn't this
pretty. However, itis equivalent.

Selector, Aliases and Projections

GET /op:person
{name+,organization.*,
$last four:=private info
.tax ident[-4:]}

?$last four.contains('33')

Curly braces are used to specify which
values are to be returned. Custom sort
order is provided by a trailing plus or
minus. Column aliases, denoted by the
dollar sign, are set with the :=operator.

SELECT p.name AS "person.name",
o.org id AS "organization.org id",
o.name AS "organization.name",
o.is active AS "organization.is active",
o.division of AS "organization.division of",
SUBSTRING(r.tax_ident FROM
(LENGTH(r.tax_ident)-4+1)) AS "last four"
FROM op.person AS p
LEFT OUTER JOIN op.organization AS o
ON (p.org_id = o.org_id)
LEFT OUTER JOIN hr.private info AS r
ON (r.ppl seq = p.ppl seq)
WHERE POSITION('33' IN SUBSTRING(r.tax_ident
FROM (LENGTH(r.tax ident)-4+1)))>0

GET /op:project
{status |max(start date)}

Aggregate functions work in a two step
process. First, a 1-1 correspondence is
setup with a table (or, in the case above, a
virtual result set). Then, the aggregation
happens relative to that basis. If the basis
does not correspond exactly to a given
table's rows, then the projection
indicator (a vertical bar) is needed.
Equivalently, op:project{status|} returns
distinct status codes in the project table.

SELECT p.status AS "status",
max (p.start date) AS
"max(start date)”

FROM op.project AS p

GROUP BY p.status

ORDER BY p.status

The exact implementation of projection
is abit complicated once joined tables
and multiple aggregates are considered.

ORDER BY p.name ASC, p.org_id

HTSQOL - Locators

GET /op:participation
{id(), person.id()}

A location, constructed via the id()
function, uniquely identifies a row in a
table. It is based off primary key columns,
recursively including the location of
parent tables when a foreign key is used.

SELECT (a.prj_id || '.(' || o.org id
|| *-* || n.nickname || ')') AS "id()",
(o.org id || '.' || n.nickname)

AS "person.id()"
FROM op.participation AS a
JOIN op.project AS p ON (a.prj_id = p.prj_id)
JOIN op.person AS n
ON (a. ppl seq = n. ppl seq)
JOIN optbrg;hization_hs °
ON (n.org_id = n.org_id)
ORDER BY n.prj_id, o.org_id, n.nickname

200 OK
Content-Type: text/plain; charset=UTF-8

id() | person.id()

T PP

| meyers.maggy

| lakeside.maggy
| meyers.tom

| meyers.maggy

smbl . (meyers .maggy)
smbl . (lakeside .maggy)
la-102. (meyers .tom)
la-802. (meyers .maggy)

GET /op:person[meyers.tom]

A locator is a comma-separated list of
locations which return a specific row.

SELECT p.*
FROM op.person AS p
JOIN op.organization AS o
ON (p.org id = o.org id)
WHERE htsql normalize(o.org id)
= htsql normalize('meyers')
AND htsql normalize(p.nickname)
= htsql normalize('tom')
ORDER BY o.org id, n.prj id

where htsql normalize(x) :=
TRANSLATE (TRIM (BOTH ' ' FROM LOWER(CAST ($1 AS TEXT))),
CST RS () =31 \rgn<>, 2/,

)

In other words, comparison by locator is
case insensitive and ignores special
characters. If this is not unique, then
single-quoting is required, e.g. 'MeYeRs';
further, for that table, id() will quote.

HTSQL - Request Segments and Commands

GET /op:organization[meyers] GET /op:organization
/op:person{nickname}.xml /select (1imit=50,0ffset=50)

. json(indent=1)
To support drill-down behavior and

nested report structures, multiple
segments are supported if there is a
unique join from one to the other.

SELECT o.*, p.nickname

FROM op.organization AS o

JOIN op.person AS p

ON (p.org id = o.org id)

WHERE htsql normalize(o.org id) =
htsql normalize('meyers')

ORDER BY o.org id, o.org_id, p.nickname

200 OK
Content-Type: text/xml; charset=UTF-8

<organization htsql:schema="op">
<_ org_id="meyers" name="Meyers Group"
is_active="true" division of=""
htsql:is null="division of">
<person htsqgl:schema="op">
<_ nickname="hill" />
<_ nickname="jack" />
<_ nickname="jim" />
</person>
</ >
</organization>

By default we have been using a default
command for our examples — SELECT,
and either the default file format, the
plain text debug output, or an XML
format. Both commands and formatters
can be provided, taking arguments.

SELECT o.*

FROM op.organization AS o
ORDER BY o.org id

LIMIT 50 OFFSET 100

200 OK
Content-Type: text/json; charset=UTF-8

[

{
org_id: "meyers",
name: "Meyers Group"
is_active: true,
division of: null

Yo

]

HTSQL - Insert/Update/Delete

/op:organization[lakeside]/
/op:person/insert ()
?nickname:='o-hrien'
&name{family,given} :=
{'0''Brien', 'Mark'}
&private info.tax ident:=
'283-33-9999"

This command looks up the correct

for eign key to link organization and person,
createsrow in person table, and then
createsarowin the "facet" table (1-1
correspondence), private_info.

INSERT INTO "op"."individual"
(org id, nickname, name)

SELECT o.org id, 'o-brien',
ROW('O' 'Brien',NULL, 'Mark',NULL)
FROM op.organization AS o

WHERE htsql normalize(o.org id) =
htsql normalize('lakeside"')
RETURNING ppl seq;

INSERT INTO "op".'"private info"
(ppl_seq, tax ident)
SELECT '283-33-9999', <returned-id>;

/op:person[lakeside.o-brien]
/update()?organization:=
@organization[ls-tower]

Thiscommand changes Mark's
organization, by looking up (via location)
the proper foreign key for Is-tower.

UPDATE oOp.person
SET org_id =
(SELECT org id
FROM op.;rganization
WHERE htsql norm(org_id)
= htsql norm('ls-tower'))
WHERE (org_id, nickname) IN
(SELECT p.org id, p.nickname
FROM person p
JOIN op.organization o
ON (p.org_id = o.org_id)
WHERE htsql norm(o.org id)
= htsql norm('lakeside')
AND htsql norm(p.nickname)
= htsql norm('o-brien'))

The extra complication (no-ops in this
case) isneeded to handle situations
where the locator does not correspond to

the nrimarvkev columns of the table
= § uLJ .L\\JJ CULTUILIILIILIIV Ul L11U QUi v.

Ir<o IJL ITITY

HTSQOL - It makes GUIs Easier

HTSQL enables reliable,

scalable, and rapid development = | S
of Web Clients using Javascript. s o=l SIn i
By having asolid, heavily tested .2 = e —
URL-to-SQL translation g vy (B Fore- A
language, we've made huge ok ||
strides meeting our other goals: b
a "DBGUI", which will be made 'y
open source this September. 5 |
P e st Pl b e
O, T & 55 CF | P e -
[P g a0
— W HTSQLisan open source
- e . product of Prometheus Research,
© e e 2 LLC. HTSQL was inspired by
building web-apps with James
Clark's XSLT. It was specified and
prototyped by Clark Evans, and
then implemented by Kirill
|| P =] {] | e = :
: :.;— . !3:_1';?:;— Errsrrrrra— " Errrrr— Simonov.
[This work would not have been
possible without the generous
e anE e R R lmaBeBns= | support from the Simons
o ==l Foundation.

