
Hyper-Text Structured Query Language

HTSQL is a middleware component that translates a HTTP
request into a SQL query, performs the query against a
relational database, and returns the result as XML,
HTML, CSV, JSON, or YAML.

HTSQL formalizes a URI-to-SQL translation, covering
common database query constructs with a succinct,
easy-to-learn syntax. HTSQL decouples the application
from the data-store, putting the database itself
"on the web". HTSQL is Open Source Technology.

 /----------------\ HTTP Request /-------------------------\ * select, insert, update,
 | Web Browser | ---------------> |-. | delete and merge
 | * Direct URLs | URI, headers, | \ .--> Generated | * expressions & functions
 | * HTML / XSLT | post/put body | v / SQL Query | * inner and outer joins
 | * Javascript | | HTSQL | | * correlated sub-queries
 | GUI Front End | HTTP Response | / ^ v | * aggregates / projection
 | * Java / C# | <--------------- <--. \ DATABASE | * users and transactions
 | * Python, etc | status code, | Query | | * row-level permissions
 | Excel /w Macro | headers, and | Results <..../ | * TXT, CSV, XML, JSON,
 | Command Line | formatted | | HTML and YAML formats
 \----------------/ results \-------------------------/

HTSQL - Example / Regression Schema

 ORGANIZATION PLANNING and HUMAN RESOURCES CATALOG

 +-------------------+ +-------------------+
 | OP.PROJECT | | OP.ORGANIZATION | PK - Primary Key
 +-------------------+ +-------------------+ FK - Foreign Key
 | prj_id PK |--\ /---| org_id PK |---\ ---\ NN - Not NULL
 | name NN | | | | name NN | | | CK - Check Constraint
 | status CK | | | | is_active NN | | | UK - Unique Key
 | client FK |>---------/ | division_of FK |>--/ | [] - ARRAY TYPE
 | start_date NN | | . +-------------------+ . | {} - ROW TYPE
 | description | | . . |
 +-------------------+ | project is an organization |
 .| related to may be a division |
 a project has zero . | at most one of a larger |
 or more people who | organization organization \--------------\
 participate in it | |
 | +-------------------+ |
 +-------------------+ | a person has at most | OP.PERSON | |
 | OP.PARTICIPATION | | one human resources +-------------------+ |
 +-------------------+ | private record . | org_id FK,PK1 |>----/
 | prj_id FK,PK1 |>-/ . | nickname PK2 | .
 | ppl_seq FK,PK2 |>-------------------------- /---| ppl_seq NN,UK | .
 | billing_rate | . . | | name {given, | each person
 | capacity [] | . +-----------------+ .| | middle, family } | is part of
 +-------------------+ . | HR.PRIVATE_INFO | | | postfix } (NN) | exactly one
 . +-----------------+ | | email | organization
 a person participates | ppl_seq FK,PK |>--/ +-------------------+
 in zero or more projects | tax_ident |
 +-----------------+

HTSQL - Selection and Filters

GET /op:organization

This request selects all rows from the
organization table in the op schema. By
default, rows are ordered by primary key.

SELECT o.*
FROM op.organization AS o
ORDER BY o.org_id

200 OK
Content-Type: text/plain; charset=UTF-8

 | organization |
-+---+-
 | org_id | name | is_active | division_of |
-+----------+--------------------------+-----------+-------------+-
lakeside	Lake Side Partners, LLC		
lsapts	Lake Shore Apartments	True	lakeside
lstower	Lake Side Towers	True	lakeside
meyers	Meyers Group	True	
smith	Rudgen, Taupe, and Smith	False	

HTSQL uses percent-encoding for
non-printable characters, UTF-8
sequences, or RFC 2396 unwise or
reserved characters. Like SQL, catalog
entries can be double-quoted for
case-sensitive matching.

GET /op:organization.xml
?name~'meyers'

This query returns organizations where
the name matches a case-insensitive
regular expression. Unlike HTML form
submission, string literals are always
single-quoted.

SELECT o.*
FROM op.organization AS o
WHERE LOWER(name) LIKE '%meyers%'
ORDER BY o.org_id

200 OK
Content-Type: text/xml; charset=UTF-8

<organization htsql:schema="op">
 <_ org_id="meyers" name="Meyers Group"
 is_active="true" division_of=""
 htsql:is_null="division_of"/>
</organization>

In this example, the XML output format
was requested. HTSQL attributes are
used cases to indicate NULLs, to name a
schema or when the table/column
identifier is not a valid XML name.

HTSQL - Join Specifiers

GET /op:project
 ?client.name~'meyers'

An automatic join is constructed when a
single-column foreign-key is used with
the "dot" operator. In the op schema, the

client column of the project table is a
foreign key reference to organization.

SELECT p.*
FROM op.project AS p
JOIN organization AS o
 ON (p.client = o.org_id)
WHERE LOWER(o.name)
LIKE '%meyers%'
ORDER BY p.prj_id

When it is not ambiguous, a table name
can likewise be used to indicate the
foreign-key join. In the above example,
the column specifier client could be
replaced with organization .

GET /op:project
?participation

Foreign-keys are also used in reverse to
create "plural" specifiers. The example
above returns all projects that have at
least one associated participation record.

SELECT p.*
FROM op.project AS p
WHERE EXISTS
(SELECT 'X'
 FROM op.participation AS x
 WHERE x.proj_id = p.proj_id)
ORDER BY p.prj_id

In a predicate expression, a plural join
specifier is treated as an implicit test for
existence. If a column is referenced by a
plural specifier in this manner, it is
implicitly converted to a boolean value.

HTSQL - Functions and Expressions

GET /op:organization
 ?org_id.lower()[:2]='me'
 &!division_of

Full predicate algebra is supported, as
well as standard SQL functions and
operators. The "slice" syntax sugar is
included for substring operations.

SELECT o.*
FROM op.organization AS o
WHERE 'me' = SUBSTRING(
 LOWER(o.org_id) FROM 1 FOR 2)
AND (o.division_of IS NULL
 OR o.division_of = '')
ORDER BY o.org_id

In HTSQL, non-boolean values found in a
predicate are implicitly cast as boolean:
zero, empty string, array of zero length,
and NULL are FALSE; all other values are
TRUE. All other type casting in HTSQL is

explicit. Functions are strictly typed.

GET /op:organization
?max(project.start_date)
.year<2004

Aggregate functions are supported on
plural specifiers. Furthermore, fields of
user defined types and date components
can be accessed with the dot operator.

SELECT o.*
FROM op.organization AS o
WHERE EXTRACT(YEAR FROM
 (SELECT MAX(p.start_date)
 FROM op.project AS p
 WHERE p.client = o.org_id))
 < 2004
ORDER BY o.org_id

To enhance readability, a method syntax
is provided for polymorphic functions.

NOTE: In the current implementation,
some of the generated SQL isn't this
pretty. However, it is equivalent.

Selector, Aliases and Projections

GET /op:person
{name+,organization.*,
 $last_four:=private_info
 .tax_ident[-4:]}
?$last_four.contains('33')

Curly braces are used to specify which
values are to be returned. Custom sort
order is provided by a trailing plus or
minus. Column aliases , denoted by the
dollar sign, are set with the := operator.

SELECT p.name AS "person.name",
 o.org_id AS "organization.org_id",
 o.name AS "organization.name",
 o.is_active AS "organization.is_active",
 o.division_of AS "organization.division_of",
 SUBSTRING(r.tax_ident FROM
 (LENGTH(r.tax_ident)-4+1)) AS "last_four"
FROM op.person AS p
LEFT OUTER JOIN op.organization AS o
 ON (p.org_id = o.org_id)
LEFT OUTER JOIN hr.private_info AS r
 ON (r.ppl_seq = p.ppl_seq)
WHERE POSITION('33' IN SUBSTRING(r.tax_ident
 FROM (LENGTH(r.tax_ident)-4+1)))>0
ORDER BY p.name ASC, p.org_id

GET /op:project
{status|max(start_date)}

Aggregate functions work in a two step
process. First, a 1-1 correspondence is
setup with a table (or, in the case above, a
virtual result set). Then, the aggregation
happens relative to that basis. If the basis
does not correspond exactly to a given
table's rows, then the projection
indicator (a vertical bar) is needed.
Equivalently, op:project{status|} returns
distinct status codes in the project table.

SELECT p.status AS "status",
 max(p.start_date) AS
 "max(start_date)"
FROM op.project AS p
GROUP BY p.status
ORDER BY p.status

The exact implementation of projection
is a bit complicated once joined tables
and multiple aggregates are considered.

HTSQL - Locators

GET /op:participation
{id(), person.id()}

A location, constructed via the id()
function, uniquely identifies a row in a
table. It is based off primary key columns,
recursively including the location of
parent tables when a foreign key is used.

SELECT (a.prj_id || '.(' || o.org_id
 || '.' || n.nickname || ')') AS "id()",
 (o.org_id || '.' || n.nickname)
 AS "person.id()"
FROM op.participation AS a
JOIN op.project AS p ON (a.prj_id = p.prj_id)
JOIN op.person AS n
 ON (a._ppl_seq = n._ppl_seq)
JOIN op.organization AS o
 ON (n.org_id = n.org_id)
ORDER BY n.prj_id, o.org_id, n.nickname

200 OK
Content-Type: text/plain; charset=UTF-8

 id() | person.id()
-------------------------+----------------
 smbl.(meyers.maggy) | meyers.maggy
 smbl.(lakeside.maggy) | lakeside.maggy
 la-102.(meyers.tom) | meyers.tom
 la-802.(meyers.maggy) | meyers.maggy
...

GET /op:person[meyers.tom]

A locator is a comma-separated list of
locations which return a specific row.

SELECT p.*
FROM op.person AS p
JOIN op.organization AS o
 ON (p.org_id = o.org_id)
WHERE htsql_normalize(o.org_id)
 = htsql_normalize('meyers')
AND htsql_normalize(p.nickname)
 = htsql_normalize('tom')
ORDER BY o.org_id, n.prj_id

where htsql_normalize(x) :=
 TRANSLATE(TRIM(BOTH ' ' FROM LOWER(CAST($1 AS TEXT))),
 ' ~`!@#$%^&*()-_={}[]|\:;"<>,.?/''',
 '--------------------------------')

In other words, comparison by locator is
case insensitive and ignores special
characters. If this is not unique, then
single-quoting is required, e.g. 'MeYeRs';
further, for that table, id() will quote.

HTSQL - Request Segments and Commands

GET /op:organization[meyers]
 /op:person{nickname}.xml

To support drill-down behavior and
nested report structures, multiple
segments are supported if there is a
unique join from one to the other.

SELECT o.*, p.nickname
FROM op.organization AS o
JOIN op.person AS p
ON (p.org_id = o.org_id)
WHERE htsql_normalize(o.org_id) =
 htsql_normalize('meyers')
ORDER BY o.org_id, o.org_id, p.nickname

200 OK
Content-Type: text/xml; charset=UTF-8

<organization htsql:schema="op">
 <_ org_id="meyers" name="Meyers Group"
 is_active="true" division_of=""
 htsql:is_null="division_of">
 <person htsql:schema="op">
 <_ nickname="hill" />
 <_ nickname="jack" />
 <_ nickname="jim" />
 </person>
 </_>
</organization>

GET /op:organization
 /select(limit=50,offset=50)
 .json(indent=1)

By default we have been using a default
command for our examples — SELECT,
and either the default file format, the
plain text debug output, or an XML
format. Both commands and formatters
can be provided, taking arguments.

SELECT o.*
FROM op.organization AS o
ORDER BY o.org_id
LIMIT 50 OFFSET 100

200 OK
Content-Type: text/json; charset=UTF-8

[
 {
 org_id: "meyers",
 name: "Meyers Group"
 is_active: true,
 division_of: null
 } ,
...
]

HTSQL - Insert/Update/Delete
/op:organization[lakeside]/
 /op:person/insert()
 ?nickname:='o-brien'
 &name{family,given}:=
 {'O''Brien','Mark'}
 &private_info.tax_ident:=
 '283-33-9999'

This command looks up the correct
foreign key to link organization and person,
creates row in person table, and then
creates a row in the "facet" table (1-1
correspondence), private_info.

INSERT INTO "op"."individual"
(org_id, nickname, name)
SELECT o.org_id, 'o-brien',
 ROW('O''Brien',NULL,'Mark',NULL)
FROM op.organization AS o
WHERE htsql_normalize(o.org_id) =
 htsql_normalize('lakeside')
RETURNING ppl_seq;

INSERT INTO "op"."private_info"
(ppl_seq, tax_ident)
SELECT '283-33-9999', <returned-id>;

/op:person[lakeside.o-brien]
 /update()?organization:=
 @organization[ls-tower]

This command changes Mark's
organization, by looking up (via location)
the proper foreign key for ls-tower.

UPDATE op.person
 SET org_id =
 (SELECT org_id
 FROM op.organization
 WHERE htsql_norm(org_id)
 = htsql_norm('ls-tower'))
WHERE (org_id, nickname) IN
 (SELECT p.org_id, p.nickname
 FROM person p
 JOIN op.organization o
 ON (p.org_id = o.org_id)
 WHERE htsql_norm(o.org_id)
 = htsql_norm('lakeside')
 AND htsql_norm(p.nickname)
 = htsql_norm('o-brien'))

The extra complication (no-ops in this
case) is needed to handle situations
where the locator does not correspond to
the primary key columns of the table.

HTSQL - It makes GUIs Easier
HTSQL enables reliable,
scalable, and rapid development
of Web Clients using Javascript.

By having a solid, heavily tested
URL-to-SQL translation
language, we've made huge
strides meeting our other goals:
a "DBGUI", which will be made
open source this September.

HTSQL is an open source
product of Prometheus Research,
LLC. HTSQL was inspired by
building web-apps with James
Clark's XSLT. It was specified and
prototyped by Clark Evans, and
then implemented by Kirill
Simonov.

This work would not have been
possible without the generous
support from the Simons
Foundation.

